# **Evaluation of the Effectiveness of a Redesigned Pipette for Reducing the Risk Factors for Musculoskeletal Disorders**

Ming-Lun (Jack) Lu, Ph.D.
Sunil Sudhakaran, M.S. AEP
March 24, 2005





#### Background

- Part of the NORA Ergonomic Intervention Project for evaluation of effectiveness of engineering interventions
- NIOSH/Duke University collaboration
- Can ergonomic design of pipettes reduce stressors related to upper limb musculoskeletal disorders (MSDs)?





## What is a Pipette?

Plunger

- A device used to transfer an exactly defined quantity of liquid from one vessel to another, which involves picking up pipette and tip, aspirating, overblowing and ejecting tip (5 major actions)
- Most pipettes used in labs are single-channel and elongated/axial in shape

Eject / trigger

Tip







#### Physical Risk Factors for Pipetting

- Highly repetitive thumb exertions for operating pipette plunger and eject trigger as a result of short cycle time (3-10 sec at Duke)
- Postural stresses include awkward and static shoulder elevation, forearm rotation, elbow flexion, and wrist deviation





## Pipetting and MSD's

- The relationship between pipetting and MSD development remains largely unknown
- The literature suggests that prolonged pipetting may increase the risk for upper limb MSD's (Bjorkstn et al, 1994; Fredriksson, 1995; David and Buckle, 1997)





### **Objective**

• To determine whether the re-designed pipette (i.e. ergonomic intervention) significantly reduces the MSD physical risk factors associated with pipetting





### **Participants**

- 11 female and 1 male full-time pipette users from two clinical labs of Duke University participated in the simulation of pipetting
- Simulation was conducted in their labs





## Pipettes Evaluated







Eppendorf Reference Oxford Benchmate II Vis 100-1000 μL volume 100-1000 μL volume

VistaLab Ovation BioNature
100-1000 μL volume





#### **Data Collection**

- Thumb and total finger forces using 19 FlexiForce<sup>TM</sup> sensors
- Outcome variables:
  - Thumb force: force data of 2 sensors
  - Total finger force: sum of force data of all 19 sensors







#### Data Collection (cont.)

- Wrist posture and forearm rotation using a twin axis electrogoniometer and a torsiometer
- Outcome variables:
  - Wrist ulnar/radial deviation
  - Wrist flexion/extension
  - Forearm pronation/supination



Electrogoniometer







### Data Collection (cont.)

- Shoulder elevation using video data analyzed with Multimedia Video Task Analysis<sup>TM</sup> software
  - Outcome
    variable:
    shoulder
    elevation greater
    than 45°







## **Experimental Design**

- Repeated measure on four independent variables (pipette type, task, volume, position)
- Randomized complete-block design for the four independent variables (3 types of pipettes, 2 hands/1 hand, 200μL/1000μL, standing/seated)
- A total of 24 trials (3 pipettes × 2 tasks × 2 volumes × 2 positions) were completed by each participant





## Sample Trials









#### Data Analysis

- The mean values of the force and goniometry outcome variables were calculated for each action
- Percent time for shoulder elevation greater than 45° for each action was calculated with MVTA for each action
- All outcome variables are calculated for the following actions:
  - Pick up pipette
  - Pick up tip
  - Aspirate
  - Overblow
  - Eject tip
- ANOVA for each outcome variable each action was tested using PROC MIXED in SAS





#### Thumb Force







#### **Total Finger Force**







#### Wrist Deviation







#### Wrist Flexion/Extension







#### Forearm Rotation













## Other Significant Effects on the Outcome Variables

|                    | Pick up<br>pipette | Pick up tip | Aspirate         | Overblow | Eject tip        |
|--------------------|--------------------|-------------|------------------|----------|------------------|
| Forearm rotation   | None               | Position    | None             | None     | None             |
| Wrist flex/Ext     | Position           | Position    | Position         | None     | Position<br>Task |
| Wrist deviation    | Position           | None        | Position         | None     | Position         |
| Shoulder elevation | Position           | Position    | Position<br>Task | None     | Position         |
| Thumb force        | None               | None        | None             | None     | None             |
| Total finger force | None               | None        | None             | None     | None             |





#### **Discussion**

- The Ovation pipette significantly reduced the thumb force and total finger force for every action of pipetting.
- The Ovation pipette significantly reduced wrist deviation and shoulder elevation for the majority of the actions of pipetting; however, it only significantly reduced wrist flexion/extension for aspiration.
- The ovation pipette required more forearm rotation (mainly pronation) than the other traditional pipettes. Forearm rotation with low force is less likely to cause hand/wrist MSD's, as compared to wrist deviation, flexion and extension.





#### **Conclusion**

• The re-designed, low force pipette showed a significant reduction in the most important MSD risk factors for pipetting, as compared to two other traditional axial-design pipettes





## Acknowledgements

- Tamara James, Valerie Beecher, Freda Kohan, Geneva and Sivonne (Duke)
- Brian Lowe, Ed Krieg, Jim Albers, Yong-Ku Kong (NIOSH)
- Dick Scordato, Kathy Wojtyna (VistaLab Inc.)
- Marisol Barrero (Mitsui Sumitomo USA)
- NIOSH NORA Grant



